VYGA - ADR FOR KEY DECISIONS

ADR 001: Selection of Backend Framework
Context

The backend of the platform requires a flexible, lightweight framework to develop RESTful APIs
that can handle user authentication, content aggregation, search functionalities, and
Al-supported processes.

Decision
The backend will be developed using Python with the Flask framework.
Rationale

e Flexibility: Flask is a micro-framework that allows for easy customization and is not
opinionated, meaning it doesn’t enforce any particular way of structuring the application.

e Community Support: Flask has a large and active community, providing plenty of
resources, plugins, and third-party libraries.

e Integration: Python’s extensive ecosystem, including libraries like Pandas, NumPy, and
TensorFlow/PyTorch, can be easily integrated within Flask applications.

Consequences

e Scalability: Flask’s lightweight nature might require additional configuration and
management for larger-scale applications.

e Learning Curve: Developers familiar with Python will find Flask easy to learn and use,
reducing the ramp-up time for new developers joining the project.

Status

Approved



ADR 002: Selection of Frontend Framework
Context

The frontend of the platform needs to be dynamic and responsive, capable of interacting
efficiently with backend APIs to provide real-time content updates and search capabilities.

Decision
The frontend will be developed using React.
Rationale

e Dynamic Ul: React’s component-based architecture allows for the creation of reusable
Ul components, which enhances development speed and maintainability.

e SPA: React is well-suited for developing Single Page Applications (SPAs), providing a
seamless user experience without full-page reloads.

e Community and Ecosystem: React has a robust ecosystem and extensive community
support, with numerous libraries and tools available for enhancing functionality.

Consequences

e SEO Challenges: React SPAs may face issues with search engine optimization (SEO);
however, this can be mitigated with server-side rendering (SSR) or pre-rendering
techniques.

e Complexity: While React offers powerful tools, it also introduces a level of complexity,
especially with state management, which may require additional libraries like Redux.

Status

Approved

ADR 003: Database Management Solution



Context

The platform requires a database solution that can handle large volumes of unstructured data
with high performance, availability, and scalability.

Decision
MongoDB Atlas will be used for managing the database.
Rationale

e NoSAQL Flexibility: MongoDB’s document-based structure is ideal for storing
unstructured or semi-structured data.

e Scalability: MongoDB Atlas provides automated scaling options, which is essential for a
growing platform.

e Managed Service: Using MongoDB Atlas reduces operational overhead by offering a
fully managed cloud service with built-in security and backup options.

Consequences

e Data Modeling: The flexibility of NoSQL can lead to challenges in data modeling and
may require careful planning to avoid performance issues.

e Cost: While MongoDB Atlas provides convenience, it may introduce additional costs
compared to self-managed solutions.

Status

Approved

ADR 004: Al Model Training and Deployment Framework



Context

The platform needs to incorporate Al models for content curation and search optimization,
requiring a robust framework for model training and deployment.

Decision
Al models will be developed and deployed using TensorFlow or PyTorch.
Rationale

e Flexibility: Both TensorFlow and PyTorch offer powerful tools for developing and training
machine learning models, with TensorFlow being more production-oriented and PyTorch
more research-oriented.

e Ecosystem: Both frameworks have a rich ecosystem of tools, libraries, and community
support, facilitating model development and deployment.

e Scalability: These frameworks are designed to work well with cloud platforms like AWS,
ensuring that models can scale with the platform’s needs.

Consequences

e Complexity: The complexity of Al models and their deployment might require
specialized knowledge, which could impact development timelines.

e Resource Intensive: Training and deploying Al models can be resource-intensive,
requiring significant computational power and potentially increasing infrastructure costs.

Status

Approved

ADR 005: Containerization Strategy

Context



The platform needs to ensure consistent environments across development, testing, and
production, along with easy scaling and deployment of services.

Decision
Docker will be used for containerizing applications.
Rationale

e Environment Consistency: Docker ensures that the application runs the same way
across different environments, reducing the “it works on my machine” problem.

e Scalability: Docker containers can be easily scaled horizontally to meet the growing
demand.

e Portability: Docker containers can be deployed on any system that supports Docker,
providing flexibility in choosing deployment environments.

Consequences

e Learning Curve: Developers need to be familiar with containerization concepts and
Docker, which may require training.

e Resource Overhead: Running multiple containers can introduce resource overhead,
which needs to be managed, especially in resource-constrained environments.

Status

Approved

ADR 006: Orchestration and Container Management

Context



The platform requires a solution for orchestrating and managing containerized applications in a
scalable and secure manner.

Decision
AWS Elastic Container Service (ECS) will be used for orchestration.
Rationale

e Managed Service: AWS ECS is a fully managed service, reducing the operational
burden of managing the container orchestration infrastructure.

e Integration: ECS integrates seamlessly with other AWS services like Elastic Container
Registry (ECR) and AWS IAM for secure and efficient operations.

e Scalability: ECS offers robust scaling options, enabling the platform to handle varying
loads efficiently.

Consequences

e Vendor Lock-in: Using AWS ECS may lead to vendor lock-in, making it challenging to
migrate to another platform in the future.

e Cost: While ECS simplifies container management, it may incur higher costs compared
to self-managed solutions.

Status

Approved



